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• The fact that A ⊆ X is a Borel set iff χA is a Borel function can be proved in exactly

the same way as (b).

• If f :X→R∗ is continuous then f−1([−∞, a)) is open, and thus trivially Borel as well.
Thus f is Borel.

• If f :X→R∗ is Borel and µ is a Borel measure on X, then f−1([−∞, a)) is Borel, and
therefore also µ-measurable, for any a ∈ R∗. Thus f is obviously measurable.

• We want to show that if f : R∗ → R∗ is monotonic then f is Borel. To prove this,
suppose b < c, f(b) < a and f(c) < a. Then any d ∈ (b, c) will be in the interval
with endpoints f(b) and f(c), and so f(d) < a also. It follows that f−1([−∞, a)) is an
interval, and is therefore Borel, for any a ∈ R∗. Thus f is Borel.

• We consider f :R∗→R∗ where f(x) = 1
x , with f(0) = c, for some fixed c. We want to

show that f is Borel.

Define g :R∗∼{0}→R∗ by g(x) = 1
x . Then

g−1([−∞, a)) =






�
1
a , 0

�
a < 0 ,

[−∞, 0) a = 0 ,

[−∞, 0) ∪
�
1
a ,∞

�
a > 0 .
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These sets are all obviously Borel. And, for any a, either f−1([−∞, a) = g−1([−∞, a)
or f−1([−∞, a) = g−1([−∞, a) ∪ {c}. Since {c} is a closed set, f−1([−∞, a) is always
a Borel set, and thus f is a Borel function.

Given f :X→R∗ Borel or measurable, we want to show the equivalence of :






(a) f−1 ([−∞, a)) is Borel (measurable) for all a ∈ R;

(b) f−1 ([−∞, a]) is Borel (measurable) for all a ∈ R;

(c) f−1(U) is Borel (measurable) for all open U ⊆ R∗;

(d) f−1(B) is Borel (measurable) for all Borel B ⊆ R∗.

We’ll focus upon measurability, the arguments for the Borel functions being identical. Triv-
ially (d) implies (c), which implies (a). To see (a) and (b) are equivalent, let

M = {A ⊆ R∗ : f−1(A) is measurable} .

By the properties of f−1, M is a σ-algebra, whether or not f is measurable. The equivalence
of (a) and (b) then follows from






[−∞, a) =
∞�

n=1

[−∞, a+ 1
n ] ∈ M assuming (b) ,

[−∞, a] =
∞�

n=1

[−∞, a+ 1
n) ∈ M assuming (a) ,

The proof that (b) and (a) together imply (c) is the same as for the proof of .

Finally, we show (c) implies (d). Assuming (c), we know M is a σ-algebra which contains
all the open subsets of R∗. But the collection of Borel sets B on R∗ is the intersection of all
such collections, and thus B ⊆ M. This is exactly the desired conclusion (d).

We’ll just consider the upper envelope. Let n ∈ N, and define fn :X→R∗

fn(x) = sup
y∈U 1

n
(x)

f(y) .

Then f = lim fn, and so we just have to show each fn is Borel.
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Fix n and a ∈ R, and let
A = {x : fn(x) > a} .

We show that A is an open set. So suppose x ∈ A. Then there is a y ∈ U 1
n
(x) with f(y) > a.

Let d(x, y) = s < 1
n , and suppose z is such that d(z, x) < 1

n − s. Then, by the triangle
inequality, d(z, y) < 1

n , and so z ∈ A also. It follows that A contains an open ball about x.
Since x was arbitrary, A is open as desired.

(a) We want to show that if f, g � 0 are measurable then
´
f + g �

´
f +
´
g. Let φ � f

a.e. and ψ � g a.e. be simple functions. Then φ + ψ � f + g a.e. is simple. So, by
Lemma 16 and the definition of integral,

ˆ
f + g �

ˆ
φ+ ψ =

ˆ
φ+

ˆ
ψ .

Taking the sup over all φ and ψ, we get the desired result.

(b) If {fj} is a sequence of nonnegative measurable functions, then by (a),

ˆ ∞�

j=1

fj �
ˆ n�

j=1

fj �
n�

j=1

ˆ
fj .

Taking the limit in n, we see

ˆ ∞�

j=1

fj �
∞�

j=1

ˆ
fj

We have

����
ˆ

f

���� =
����
ˆ

f+ −
ˆ

f−
���� �
ˆ

f+ +

ˆ
f− �

ˆ �
f+ + f−� =

ˆ
|f | .
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(a) Given f � 0 measurable and � > 0 define

ψ(x) = (1 + �)k where (1 + �)k < f(x) � (1 + �)k+1, k ∈ Z .

Then ψ is simple and f � ψ � (1 + �)f . It follows that
´
ψ � (1 + �)

´
f . Taking

�→0, it follows that
´
f is the infimum of the integrals of simple functions above f .

(b) Writing f = f+−f− and applying (a) and the definition of the integral, it easily follows
that if f is integrable thenˆ

f dµ = sup

�ˆ
φ dµ : φ � f a.e., φ(X) countable

�

= inf

�ˆ
ψ dµ : ψ � f a.e., ψ(X) countable

�
.

34 F : [a, b]→R is differentiable on (a, b) and continuous on [a, b], and F � is bounded off
of a null set. Then, for any small h � 0, we have

b−hˆ
a

F (x+ h)− F (x)

h
dL (x) =

bˆ
b−h

F −
a+hˆ
a

F, .

As h→0, the RHS converges to F (b)−F (a), by the continuity of F . And, the LHS converges
to
´
F �, by the Mean Value Theorem and the Dominated Convergence Theorem.

With F (x, t) = t3e−t2x, we set f(t) =
´∞
0 F (x, t)dL (x). Clearly f(0) =

´∞
0 0 = 0.

For t �= 0, we easily integrate to give

f(t) =

�
−t3

t2
e−t2x

�∞

0

= t .

Thus f(t) = t for all t and f �(0) = 1.

On the other hand,

D2F (x, t) =
�
3t2 − 2t4x

�
e−t2x =⇒ D2F (x, 0) = 0 .
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Thus
∞̂

0

D2F (x, 0) dL = 0 �= 1 = f �(0) .

For I ⊆ R an open interval, we assume F :X × I→R∗ satisfies

• For each t ∈ I, the function x �→ F (x, t) is µ-summable;

• For each t ∈ I, D2F (x, t) exists for µ-a.e. x ∈ X;

• There is a summable function M :X→R with

sup
t∈I

|D2F (x, t)| � M(x) for µ-a.e. x ∈ X.

Then we want to show f :I→R defined by

f(t) =

ˆ
F (x, t) dµ(x) .

is differentiable and that

f �(t)=

ˆ
D2F (x, t) dµ(x) t ∈ I .

Fix t ∈ I, and consider h �= 0 small enough that t+ h ∈ I. Define

fh(t) =
f(t+ h)− f(t)

h
=

ˆ
F (x, t+ h)− F (x, t)

h
dµ(x)

Now, by the Mean Value Theorem, for every x, t and h there is an s ∈ I such that
����
F (x, t+ h)− F (x, t)

h

���� = |D2F (x, s)| � M(x) .

So, we can apply the Dominated Convergence Theorem to prove

f �(t) = lim
h→0

fh(t) =

ˆ
lim
h→0

F (x, t+ h)− F (x, t)

h
dµ(x) =

ˆ
D2F (x, t) dµ(x) .
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